For the circuit:

Using the voltage divider: $V(s)=\frac{1 / L C}{s\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)}$. The roots of quadratic term are:
$s_{1,2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}$, which can be expressed as: $s_{1,2}=\omega_{0}\left[-\varsigma \pm j \sqrt{1-\varsigma^{2}}\right]$, where
$\varsigma=\frac{R}{2} \sqrt{\frac{C}{L}}$ is the damping factor and $\omega_{0}=\frac{1}{\sqrt{L C}}$ is the resonant frequency. Here it is clear that the damping factor controls whether the response will be underdamped ($0<\varsigma<1$), critically damped ($\varsigma=1$), or overdamped ($\varsigma>1$). We can also express the roots as:
$s_{1,2}=-\alpha \mp j \beta$, where $\alpha=\omega_{0} \varsigma$ is the attenuation factor, and $\beta=\omega_{0} \sqrt{1-\varsigma^{2}}$ is the ring frequency (these names will be clear below). Using these definitions, $V(s)$ can be written as:

$$
V(s)=\frac{\omega_{0}^{2}}{s\left(s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}\right)}=\frac{\omega_{0}^{2}}{s(s+\alpha-j \beta)(s+\alpha+j \beta)}=\frac{\omega_{0}^{2}}{s\left((s+\alpha)^{2}+\beta^{2}\right)} .
$$

Using partial fraction expansion, this can be written as:
$V(s)=\frac{\omega_{0}^{2}}{s\left((s+\alpha)^{2}+\beta^{2}\right)}=\frac{A}{s}+\frac{D(s+\alpha)}{(s+\alpha)^{2}+\beta^{2}}+\frac{E \beta}{(s+\alpha)^{2}+\beta^{2}}$.

Solving for the unknown constants, we obtain: $A=-D=1$ and $E=-\frac{\alpha}{\beta}=-\frac{\varsigma}{\sqrt{1-\varsigma^{2}}}$, so we have: $V(s)=\frac{1}{s}-\frac{(s+\alpha)}{(s+\alpha)^{2}+\beta^{2}}-\frac{\varsigma}{\sqrt{1-\varsigma^{2}}} \frac{\beta}{(s+\alpha)^{2}+\beta^{2}}$, which transforms back to the time-domain as:

$$
v(t)=\left[1-e^{-\alpha t} \cos \beta t-\frac{\varsigma}{\sqrt{1-\varsigma^{2}}} e^{-\alpha t} \sin \beta t\right] U(t)=\left[1-\frac{1}{\sqrt{1-\varsigma^{2}}} e^{-\alpha t} \cos \left(\beta t-\tan ^{-1}\left(\frac{\varsigma}{\sqrt{1-\varsigma^{2}}}\right)\right)\right] U(t)
$$

2nd Order Step Response

$$
\begin{aligned}
& N:=500 \quad \text { Tax }:=10 \quad i:=0,1 . . \mathrm{N} \\
& L \quad L:=1 \quad C:=1 \quad t(i):=\operatorname{Tmax} \cdot \frac{i}{N} \quad \text { omega } 0:=\frac{1}{\sqrt{L \cdot C}}
\end{aligned}
$$

$\operatorname{squig}(\mathrm{R}):=\frac{\mathrm{R}}{2} \cdot \sqrt{\frac{\mathrm{C}}{\mathrm{L}}} \quad \operatorname{alpha}(\mathrm{R}):=\operatorname{omeg} 0 \cdot \operatorname{squig}(\mathrm{R}) \quad \operatorname{beta}(\mathrm{R}):=\operatorname{omeg} 0 \cdot \sqrt{1-\operatorname{squig}(\mathrm{R})^{2}}$
$v(i, R):=1-e^{-\operatorname{alpha}(R) \cdot t(i)} \cdot(\cos ($ beta($R) \cdot t(i))+\frac{\operatorname{squig}(R)}{\sqrt{1-\operatorname{squig}(R)^{2}}} \cdot \sin ($ beta $\left.(R) \cdot t(i))\right)$
$v c(i):=1-(1+$ meg $0 \cdot t(\mathrm{i})) \cdot \mathrm{e}^{-\operatorname{omeg} 0 \cdot t(\mathrm{i})}$

