
2nd Order Step Response 
 
For the circuit:   
 
 
 
 
 
 

Using the voltage divider:  .  The roots of quadratic term are: 

 , which can be expressed as: , where 

 

 is the damping factor and  is the resonant frequency.  Here it is clear 

that the damping factor controls whether the response will be underdamped (  ), 
critically damped (  ), or overdamped (  ).  We can also express the roots as: 

, where  is the attenuation factor, and  is the ring 
frequency (these names will be clear below).  Using these definitions, V(s) can be written as: 
 

 . 

 
Using partial fraction expansion, this can be written as: 
 

 . 

 

Solving for the unknown constants, we obtain:  and  , so 

we have:   , which transforms back to 

the time-domain as: 
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